537 research outputs found

    De Sitter Space and Spatial Topology

    Full text link
    Morrow-Jones and Witt have shown that generic spatial topologies admit initial data that evolve to locally de Sitter spacetimes under Einstein's equations. We simplify their arguments, make them a little more general, and solve for the global time evolution of the wormhole initial data considered by them. Finally we give explicit examples of locally de Sitter domains of development whose universal covers cannot be embedded in de Sitter space.Comment: 21 pages, 7 figure

    Two universal results for Wilson loops at strong coupling

    Get PDF
    We present results for Wilson loops in strongly coupled gauge theories. The loops may be taken around an arbitrarily shaped contour and in any field theory with a dual IIB geometry of the form M x S^5. No assumptions about supersymmetry are made. The first result uses D5 branes to show how the loop in any antisymmetric representation is computed in terms of the loop in the fundamental representation. The second result uses D3 branes to observe that each loop defines a rich sequence of operators associated with minimal surfaces in S^5. The action of these configurations are all computable. Both results have features suggesting a connection with integrability.Comment: 1+12 pages. LaTeX. No figure

    Constraints for the existence of flat and stable non-supersymmetric vacua in supergravity

    Get PDF
    We further develop on the study of the conditions for the existence of locally stable non-supersymmetric vacua with vanishing cosmological constant in supergravity models involving only chiral superfields. Starting from the two necessary conditions for flatness and stability derived in a previous paper (which involve the Kahler metric and its Riemann tensor contracted with the supersymmetry breaking auxiliary fields) we show that the implications of these constraints can be worked out exactly not only for factorizable scalar manifolds, but also for symmetric coset manifolds. In both cases, the conditions imply a strong restriction on the Kahler geometry and constrain the vector of auxiliary fields defining the Goldstino direction to lie in a certain cone. We then apply these results to the various homogeneous coset manifolds spanned by the moduli and untwisted matter fields arising in string compactifications, and discuss their implications. Finally, we also discuss what can be said for completely arbitrary scalar manifolds, and derive in this more general case some explicit but weaker restrictions on the Kahler geometry.Comment: 22 pages, Latex, no figure

    Brane Resolution Through Fibration

    Full text link
    We consider p-branes with one or more circular directions fibered over the transverse space. The fibration, in conjunction with the transverse space having a blown-up cycle, enables these p-brane solutions to be completely regular. Some such circularly-wrapped D3-brane solutions describe flows from SU(N)^3 N=2 theory, F_0 theory, as well as an infinite family of superconformal quiver gauge theories, down to three-dimensional field theories. We discuss the operators that are turned on away from the UV fixed points. Similarly, there are wrapped M2-brane solutions which describe smooth flows from known three-dimensional supersymmetric Chern-Simons matter theories, such as ABJM theory. We also consider p-brane solutions on gravitational instantons, and discuss various ways in which U-duality can be applied to yield other non-singular solutions.Comment: 35 pages, additional referenc

    Self-gravitating branes of codimension 4 in Lovelock gravity

    Full text link
    We construct a familly of exact solutions of Lovelock equations describing codimension four branes with discrete symmetry in the transverse space. Unlike what is known from pure Einstein gravity, where such brane solutions of higher codimension are singular, the solutions we find, for the complete Lovelock theory, only present removable singularities. The latter account for a localised tension-like energy-momentum tensor on the brane, in analogy with the case of a codimension two self-gravitating cosmic string in pure Einstein gravity. However, the solutions we discuss present two main distinctive features : the tension of the brane receives corrections from the induced curvature of the brane's worldsheet and, in a given Lovelock theory, the spectrum of possible values of the tension is discrete. These solutions provide a new framework for the study of higher codimension braneworlds.Comment: 22 page

    The Dirichlet and the weighted metrics for the space of Kahler metrics

    Get PDF
    In this work we study the intrinsic geometry of the space of Kahler metrics under various Riemannian metrics. The first part is on the Dirichlet metric. We motivate its study, we compute its curvature, and we make links with the Calabi metric, the K-energy, the degenerate complex Hessian equation. The second part is on the weighted metrics, for which we investigate as well their geometric properties.Comment: 33 pages, new sections on the weighted metric

    The Spin(7)Spin(7)-structures on complex line bundles and explicit Riemannian metrics with SU(4)-holonomy

    Full text link
    We completely explore the system of ODE's which is equivalent to the existence of a parallel Spin(7)Spin(7)-structure on the cone over a 7-dimensional 3-Sasakian manifold. The one-dimensional family of solutions of this system is constructed. The solutions of this family correspond to metrics with holonomy SU(4) which generalize the Calabi metrics.Comment: 11 page

    Self-Duality in D <= 8-dimensional Euclidean Gravity

    Full text link
    In the context of D-dimensional Euclidean gravity, we define the natural generalisation to D-dimensions of the self-dual Yang-Mills equations, as duality conditions on the curvature 2-form of a Riemannian manifold. Solutions to these self-duality equations are provided by manifolds of SU(2), SU(3), G_2 and Spin(7) holonomy. The equations in eight dimensions are a master set for those in lower dimensions. By considering gauge fields propagating on these self-dual manifolds and embedding the spin connection in the gauge connection, solutions to the D-dimensional equations for self-dual Yang-Mills fields are found. We show that the Yang-Mills action on such manifolds is topologically bounded from below, with the bound saturated precisely when the Yang-Mills field is self-dual. These results have a natural interpretation in supersymmetric string theory.Comment: 9 pages, Latex, factors in eqn. (6) corrected, acknowledgement and reference added, typos fixe

    Balanced metrics on Cartan and Cartan-Hartogs domains

    Get PDF
    This paper consists of two results dealing with balanced metrics (in S. Donaldson terminology) on nonconpact complex manifolds. In the first one we describe all balanced metrics on Cartan domains. In the second one we show that the only Cartan-Hartogs domain which admits a balanced metric is the complex hyperbolic space. By combining these results with those obtained in [13] (Kaehler-Einstein submanifolds of the infinite dimensional projective space, to appear in Mathematische Annalen) we also provide the first example of complete, Kaehler-Einstein and projectively induced metric g such that αg\alpha g is not balanced for all α>0\alpha >0.Comment: 11 page
    • …
    corecore